Structurc of Magnesium $\left[(S, S)-N, N^{\prime}\right.$-Ethylenediaminedisuccinato]cuprate(II) Heptahydrate

By Jiřina Soldánová, František Pavelčík and Jaroslav Majer
Department of Analytical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 88034 Bratislava, Czechoslovakia

(Received 2 July 1980; accepted 24 November 1980)

Abstract

Mg}\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8}\right)\right] .7 \mathrm{H}_{2} \mathrm{O}, M_{r}=502 \cdot 16\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=8.392$ (2), $b=10.855$ (2), $c=21.508$ (6) $\AA, U=1959.2$ (8) $\AA^{3}, Z=4, D_{m}=$ 1.70 (2), $D_{x}=1.70 \mathrm{Mg} \mathrm{m}^{-3}, \mathrm{Cu} K \alpha$ radiation ($\lambda=$ $1.5418 \AA$), $\mu=2.65 \mathrm{~mm}^{-1}$. Final $R=0.05$ for 1542 observed reflections. The structure consists of complex anions, Mg^{2+} cations and water molecules. The Cu atom is coordinated by two N atoms and one O atom from each of the four carboxylate arms of the complexing species. The coordination polyhedron of the $\mathrm{Cu}^{\mathrm{II}}$ atom is an asymmetrically distorted tetragonal bipyramid. The complex anion has the absolute configuration (OC-6-13-A) with six-membered β alanine chelate rings disposed equatorially, and fivemembered glycine rings in the axial directions.

Introduction. Cupric complexes of N, N^{\prime}-ethylenediaminedisuccinic acid (H_{4} edds) have been investigated as part of a study of the diastereoselectivity in compounds of the ligand with transition metals (Pavelčík \& Majer, 1978; Pavelčík, Kettmann \& Majer, 1979; Neal \& Rose, 1972).

Single crystals were prepared by dissolving equimolar amounts of (S, S) - H_{4} edds and $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$ in water and adding excess MgO . The solution was heated and excess MgO filtered off. After evaporation, crystals of the cupric complex formed and were recrystallized from water. Elemental analysis gave: $\mathrm{C} 23.72, \mathrm{~N} 5.24, \mathrm{Cu} 12.70 \mathrm{Mg} 4.85 \%$; $\mathrm{C}_{10}{ }^{-}$ $\mathrm{H}_{26} \mathrm{CuMgN}_{2} \mathrm{O}_{15}$ requires $\mathrm{C} 23.92, \mathrm{~N} 5.58, \mathrm{Cu} 12.65$, Mg 4.84\%.

A blue crystal $0.40 \times 0.28 \times 0.25 \mathrm{~mm}$ was selected for data collection. Weissenberg photographs showed the crystal to be orthorhombic, with systematic absences $h 00$ for $h=2 n+1,0 k 0$ for $k=2 n+1,00 l$ for $l=2 n+1$, uniquely indicating the space group $P 2_{1} 2_{1} 2_{1}$. A Syntex $P 2_{1}$ diffractometer and $\mathrm{Cu} K_{\alpha}$ radiation with a graphite monochromator were used for lattice-parameter and intensity measurements. The intensities were measured by the $\theta-2 \theta$ scan technique $\left(0<2 \theta \leq 100^{\circ}\right)$ at a scan rate varying from 4.88 to $29.3^{\circ} \mathrm{min}^{-1}$ in 2θ. The background was measured at each end of the scan for one half of the scan time. Two standard reflections monitored after every 98 scans showed that no correction for instrument instability or
crystal decay was required. The data were corrected for Lorentz and polarization effects and for absorption. 1542 reflections with $I>1.96 \sigma(I)$ were used for the analysis.
The heavy-atom method was employed for the structure determination. The $\mathrm{Cu}-\mathrm{Cu}$ vectors were identified in a Patterson function. All non-H atoms were found from Fourier syntheses. Twelve H atoms from the complex anion were placed in geometrically calculated positions at $0.9 \AA$ from the bonded atoms and their positions confirmed by a difference synthesis. H atoms from water molecules were not resolvable. The structure was refined by block-diagonal least squares with anisotropic thermal parameters for nonhydrogen atoms and isotropic for H . The function $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ was minimized; the weighting scheme $w^{-1}=\sigma^{2}\left(\left|F_{o}\right|\right)+\left(C\left|F_{o}\right|\right)^{2}$, where $\sigma\left(\left|F_{o}\right|\right)$ is derived from counting statistics and $C=0.03$, was employed. C was adjusted so that a constant value of $\left\langle w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}\right\rangle$ was obtained in different $\left|F_{o}\right|$ intervals. The final $R=\sum|\Delta F| / \sum\left|F_{o}\right|=0.05$ for the observed reflections. The corresponding $R_{w}=$ $\left[\sum w|\Delta F|^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}=0.076$. The maximum peak in the final difference synthesis was 0.35 e $\AA^{-3 . *}$.
Scattering factors for $\mathrm{Cu}, \mathrm{Mg}, \mathrm{O}, \mathrm{N}, \mathrm{C}$ and H were taken from International Tables for X-ray Crystallography (1974). All calculations were performed on a Nova minicomputer with the Syntex XTL structure determination system, and on a Siemens 4004/150 computer at the Research Computing Centre of the Comenius University in Bratislava with the NRC program package (Ahmed, 1970). Coordinates for non-hydrogen atoms are listed in Table 1, bond distances and angles in Table 2, selected torsion angles in Table 3, and hydrogen-bond contacts in Table 4.

Discussion. Crystals of $\mathrm{Mg} \mid \mathrm{Cu}\{(S, S)$-edds $\}] .7 \mathrm{H}_{2} \mathrm{O}$ are composed of $[\mathrm{Cu}\{(S, S) \text {-edds }\}]^{2-}$ complex anions, Mg^{2+} cations and molecules of crystal water. The

[^0] (C) 1981 International Union of Crystallography
ligand $\{(S, S) \text {-edds }\}^{4-}$ binds with the central atom via six donors, Fig. 1. The coordination polyhedron of Cu is an asymmetrically deformed square bipyramid, elongated in the axial directions, as in $\mathrm{K}_{2}[\mathrm{Cu}(\mathrm{edta})] .3 \mathrm{H}_{2} \mathrm{O}$ (Porai-Koshits, Novožilova, Polynova, Filippova \& Martynenko, 1973). A Cu atom binds in its coordination sphere the two N atoms from an ethylenediamine residue and four O atoms from carboxyl groups. This sixfold coordination results in five chelate rings: a five-membered ethylenediamine ring (E ring), two six-membered β-alanine rings (G rings), and two five-membered glycine rings (R rings) (nomenclature according to Weakliem \& Hoard,

Table 1. Final atomic coordinates $\left(\times 10^{4}\right)$ and $B_{e q}$ for nonhydrogen atoms
E.s.d.'s are given in parentheses. $B_{\text {eq }}=\frac{4}{3} \iota_{i} \iota_{j} B_{i j} \mathbf{a}_{i}, \mathbf{a}_{j}$.

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Cu}(1)$	$76(1)$	$1790(1)$	$1971(0)$	$2 \cdot 20$
$\mathrm{~N}(1)$	$-2003(5)$	$1304(5)$	$1590(2)$	$1 \cdot 69$
$\mathrm{~N}(2)$	$-442(6)$	$541(4)$	$2632(2)$	$1 \cdot 55$
$\mathrm{C}(1)$	$-2472(8)$	$141(6)$	$1856(3)$	$2 \cdot 15$
$\mathrm{C}(2)$	$-2141(8)$	$196(6)$	$2554(3)$	$2 \cdot 21$
$\mathrm{C}(3)$	$-132(7)$	$1093(6)$	$3246(3)$	$1 \cdot 98$
$\mathrm{C}(4)$	$-872(7)$	$2402(5)$	$3253(3)$	$1 \cdot 83$
$\mathrm{C}(5)$	$1659(8)$	$1175(6)$	$3348(3)$	$2 \cdot 20$
$\mathrm{C}(6)$	$2707(8)$	$1872(6)$	$2872(3)$	$2 \cdot 03$
$\mathrm{C}(7)$	$-1892(7)$	$1340(6)$	$899(3)$	$2 \cdot 05$
$\mathrm{C}(8)$	$-1742(7)$	$2678(6)$	$681(3)$	$2 \cdot 12$
$\mathrm{C}(9)$	$-194(8)$	$3292(5)$	$834(3)$	$2 \cdot 11$
$\mathrm{C}(10)$	$-449(7)$	$598(5)$	$673(2)$	$1 \cdot 54$
$\mathrm{O}(1)$	$-909(6)$	$3008(4)$	$2759(2)$	$2 \cdot 31$
$\mathrm{O}(2)$	$-1369(6)$	$2757(4)$	$3778(2)$	$2 \cdot 54$
$\mathrm{O}(3)$	$4018(6)$	$2251(5)$	$3040(2)$	$3 \cdot 21$
$\mathrm{O}(4)$	$2252(5)$	$1980(4)$	$2321(2)$	$1 \cdot 99$
$\mathrm{O}(5)$	$493(5)$	$3095(4)$	$1349(2)$	$1 \cdot 96$
$\mathrm{O}(6)$	$348(6)$	$4044(5)$	$462(2)$	$3 \cdot 27$
$\mathrm{O}(7)$	$645(5)$	$392(4)$	$1047(2)$	$1 \cdot 96$
$\mathrm{O}(8)$	$-518(6)$	$251(5)$	$118(2)$	$3 \cdot 14$
$\mathrm{Mg}(1)$	$2698(2)$	$-715(2)$	$965(1)$	$1 \cdot 63$
$W(1)$	$2245(6)$	$-1059(5)$	$28(2)$	$2 \cdot 63$
$W(2)$	$4045(5)$	$794(4)$	$685(2)$	$2 \cdot 46$
$W(3)$	$4648(6)$	$-1873(5)$	$882(2)$	$3 \cdot 06$
$W(4)$	$3360(5)$	$-270(4)$	$1864(2)$	$2 \cdot 29$
$W(5)$	$4269(6)$	$-1771(5)$	$2978(2)$	$3 \cdot 65$
$W(6)$	$3724(5)$	$3336(5)$	$977(2)$	$3 \cdot 01$
$W(7)$	$1878(6)$	$-3584(5)$	$31(2)$	$3 \cdot 38$

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in the complex anion and the MgO_{6} octahedron, with e.s.d.'s in parentheses

$\mathrm{Cu}-\mathrm{N}(1)$	$2.001(5)$	$\mathrm{C}(6)-\mathrm{O}(3)$	$1.230(8)$
$\mathrm{Cu}-\mathrm{N}(2)$	$2.013(5)$	$\mathrm{C}(6)-\mathrm{O}(4)$	$1.252(7)$
$\mathrm{Cu}-\mathrm{O}(1)$	$2.304(4)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.532(9)$
$\mathrm{Cu}-\mathrm{O}(4)$	$1.987(4)$	$\mathrm{C}(7)-\mathrm{C}(10)$	$1.534(8)$
$\mathrm{Cu}-\mathrm{O}(5)$	$1.981(4)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.497(9)$
$\mathrm{Cu}-\mathrm{O}(7)$	$2.546(4)$	$\mathrm{C}(9)-\mathrm{O}(5)$	$1.268(7)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.442(8)$	$\mathrm{C}(9)-\mathrm{O}(6)$	$1.231(8)$
$\mathrm{N}(1)-\mathrm{C}(7)$	$1.491(8)$	$\mathrm{C}(10)-\mathrm{O}(7)$	$1.243(7)$
$\mathrm{N}(2)-\mathrm{C}(2)$	$1.485(8)$	$\mathrm{C}(10)-\mathrm{O}(8)$	$1.254(7)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.473(8)$	$\mathrm{Mg}-\mathrm{O}(2 \mathrm{l}$ vil $)$	$2.075(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.528(9)$	$\mathrm{Mg}-\mathrm{O}(7)$	$2.109(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.551(9)$	$\mathrm{Mg}-W(1)$	$2.085(5)$
$\mathrm{C}(3)-\mathrm{C}(5)$	$1.523(9)$	$\mathrm{Mg}-W(2)$	$2.080(5)$
$\mathrm{C}(4)-\mathrm{O}(1)$	$1.251(7)$	$\mathrm{Mg}-W(3)$	$2.072(5)$
$\mathrm{C}(4)-\mathrm{O}(2)$	$1.265(7)$	$\mathrm{Mg}-W(4)$	$2.070(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.548(9)$		

$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$	85.6 (2)	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	118.9 (5)
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{O}(1)$	98.0 (2)	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	114.9 (5)
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{O}(4)$	170.3 (2)	$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{O}(4)$	121.4 (6)
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{O}(5)$	93.8 (2)	$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(5)$	118.6 (6)
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{O}(7)$	71.7 (2)	$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)$	119.9 (5)
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(1)$	77.8 (2)	$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{O}(6)$	$120 \cdot 8$ (6)
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(4)$	$90 \cdot 1$ (2)	$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{C}(8)$	$120 \cdot 8$ (6)
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(5)$	176.3 (2)	$\mathrm{O}(6)-\mathrm{C}(9)-\mathrm{C}(8)$	118.2 (5)
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(7)$	101.0 (2)	$\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{O}(8)$	126.7 (5)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(4)$	89.6 (2)	$\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{C}(7)$	118.2 (5)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(5)$	98.7 (2)	$\mathrm{O}(8)-\mathrm{C}(10)-\mathrm{C}(7)$	115.0 (5)
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(7)$	169.7 (1)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	115.9 (5)
$\mathrm{O}(4)-\mathrm{Cu}-\mathrm{O}(5)$	91.1 (2)	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$	112.0 (5)
$\mathrm{O}(4)-\mathrm{Cu}-\mathrm{O}(7)$	100.7 (2)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{C}(6)$	119.7 (5)
$\mathrm{O}(5)-\mathrm{Cu}-\mathrm{O}(7)$	82.3 (2)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)$	109.9 (5)
$\mathrm{Cu}-\mathrm{O}(1)-\mathrm{C}(4)$	108.3 (4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	115.2 (5)
$\mathrm{Cu}-\mathrm{O}(4)-\mathrm{C}(6)$	129.0 (4)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	109.6 (5)
$\mathrm{Cu}-\mathrm{O}(5)-\mathrm{C}(9)$	129.1 (4)	$\mathrm{O}\left(2^{\text {viii }}\right)-\mathrm{Mg}-\mathrm{O}(7)$	89.6 (2)
$\mathrm{Cu}-\mathrm{O}(7)-\mathrm{C}(10)$	105.1 (3)	$\mathrm{O}\left(2^{\text {vil }}\right)-\mathrm{Mg}-W(1)$	91.0 (2)
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(7)$	110.3 (4)	$\mathrm{O}\left(2^{\text {vili }}\right)-\mathrm{Mg}-W(2)$	178.5 (2)
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(1)$	107.8 (4)	$\mathrm{O}\left(2^{\text {vili }}\right)-\mathrm{Mg}-W$ (3)	87.9 (2)
$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(2)$	107.3 (4)	$\mathrm{O}\left(2^{\text {vil }}\right)-\mathrm{Mg}-W(4)$	94.7 (2)
$\mathrm{Cu}-\mathrm{N}(2)-\mathrm{C}(3)$	108.7 (3)	$\mathrm{O}(7)-\mathrm{Mg}-W$ (1)	92.0 (2)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	107.9 (5)	$\mathrm{O}(7)-\mathrm{Mg}-W(2)$	91.1 (2)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	109.6 (5)	$\mathrm{O}(7)-\mathrm{Mg}-W(3)$	177.4 (2)
$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(10)$	$110 \cdot 6$ (5)	$\mathrm{O}(7)-\mathrm{Mg}-W(4)$	90.4 (2)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	$107 \cdot 2$ (5)	$W(1)-\mathrm{Mg}-W(2)$	87.7 (2)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108.1 (5)	$W(1)-\mathrm{Mg}-W(3)$	87.3 (2)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	109.1 (5)	$W(1)-\mathrm{Mg}-W(4)$	173.9 (2)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{O}(2)$	$126 \cdot 2$ (6)	$W(2)-\mathrm{Mg}-W(3)$	91.3(2)
		$W(2)-\mathrm{Mg}-W(4)$	$86 \cdot 6$ (2)
		$W(3)-\mathrm{Mg}-W(4)$	$90 \cdot 6$ (2)

Table 3. Selected torsion angles $\left(^{\circ}\right.$) in the complex molecule

$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	42.7 (6)	$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{O}(7)-\mathrm{Cu}$	$-12 \cdot 1$ (6)	$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(4)$	54.9 (4)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	-54.4 (6)	$\mathrm{C}(10)-\mathrm{O}(7)-\mathrm{Cu}-\mathrm{N}(1)$	31.4 (4)	$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(4)-\mathrm{C}(6)$	-30.7 (5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{Cu}$	38.1 (5)	$\mathrm{O}(7)-\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(7)$	-41.5 (3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{O}(7)$	100.4 (6)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(1)$	-12.5 (4)	$\mathrm{Cu}-\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	$3 \cdot 6$ (7)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(1)$	$167 \cdot 8$ (5)
$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(1)$	-17.2 (3)	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(2)$	-32.4 (7)	$\mathrm{C}(10)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(1)$	-71.2 (6)
$\mathrm{Cu}-\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{C}(8)$	13.9 (8)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{Cu}$	46.2 (5)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$	157.4 (5)
$\mathrm{O}(5)-\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	-38.5 (8)	$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(1)$	-34.6 (4)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	-51.9 (1)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)$	69.7 (6)	$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}(1)-\mathrm{C}(4)$	17.8 (4)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(4)$	-62.1 (1)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Cu}$	-69.3 (5)	$\mathrm{Cu}-\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)$	18.6 (8)	$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(2)$	168.2 (1)
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Cu}-\mathrm{O}(5)$	39.0 (4)	$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(3)$	-25.5 (9)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(2)$	-72.2(1)
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{O}(5)-\mathrm{C}(9)$	-13.4 (5)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{N}(2)$	$56 \cdot 3$ (7)	$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	$80 \cdot 6$ (1)
$\mathrm{Cu}-\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(10)$	51.7 (5)	$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{Cu}$	-73.4 (5)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	166.9 (1)

$$
\mathrm{Mg}\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8}\right)\right] .7 \mathrm{H}_{2} \mathrm{O}
$$

Table 4. Hydrogen-bond contacts $(X-\mathrm{H} \cdots Y)<3 \AA$

$\mathrm{N}(1) \cdots W\left(5^{1}\right)$	$2.975(7)$
$\mathrm{O}(1) \cdots W\left(4^{\prime}\right)$	$2.897(6)$
$\mathrm{O}(2) \cdots W\left(7^{\prime}\right)$	$2.978(6)$
$\mathrm{O}(3) \cdots W\left(3^{\text {ii }}\right)$	$2.746(6)$
$\mathrm{O}(3) \cdots W\left(5^{\text {iii }}\right)$	$2.828(7)$
$\mathrm{O}(4) \cdots W(4)$	$2.794(6)$
$\mathrm{O}(5) \cdots{ }^{\prime}(6)$	$2.841(6)$
$\mathrm{O}(6) \cdots W\left(2^{\text {iii }}\right)$	$2.705(6)$

$\mathrm{O}(8) \cdots W(1)$	$2.729(7)$
$\mathrm{O}(8) \cdots W\left(6^{\text {iil }}\right)$	$2.883(7)$
$\mathrm{O}(8) \cdots W\left(7^{\text {l }}\right)$	$2.856(7)$
$W(1) \cdots W(7)$	$2.759(7)$
$W(2) \cdots W(6)$	$2.844(7)$
$W(3) \cdots W\left(7^{v}\right)$	$2.759(7)$
$W(4) \cdots W(5)$	$2.998(7)$
$W(5) \cdots W\left(6^{\text {vl }}\right)$	$2.812(7)$

Equivalent positions
(i) $-x, y+\frac{1}{2}, \frac{1}{2}-z$
(v) $x+\frac{1}{2},-\frac{1}{2}-y,-z$
(ii) $1-x, y+\frac{1}{2}, \frac{1}{2}-z$
(vi) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$
(iii) $x-\frac{1}{2}, \frac{1}{2}-y,-z$
(vii) $-x, y-\frac{1}{2}, \frac{1}{2}-z$

Fig. 2. The projection of the structure in the \mathbf{b} direction. Coordination bonds are represented by dashed lines.
different coordination polyhedra $\left(\mathrm{MgO}_{6}\right) . \mathrm{O}(7)$ bridges $\mathrm{Cu}^{\mathrm{II}}$ and Mg^{2+}. As a result of this, the axial binding length $\mathrm{O}(7)-\mathrm{Cu}$ increases, so that it reaches $2.546 \AA$, whereas the other axial binding length $[\mathrm{O}(1)-\mathrm{Cu}]$ is $2.305 \AA$. The whole structure is stabilized by hydrogen bonds, Table 4.

The $\{(S, S) \text {-edds }\}^{4-}$ ligand binds with Cu^{2+} stereospecifically, giving rise to the absolute configuration (OC-6-13-A) (Brown, Cook \& Sloan, 1975). This configuration is the same as in the complexes of this ligand with $\mathrm{Ni}^{11}, \mathrm{Co}^{111}$ and Fe^{111} (Pavelčik, 1980, unpublished), and points to a significant diastereoselectivity of optically active forms of $\{(S, S) \text {-edds }\}^{4-}$.

References

Ahmed, F. R. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 55-57. Copenhagen: Munksgaard.
Brown, M. F., Cook, B. R. \& Sloan, T. E. (1975). Inorg. Chem. 14, 1273-1277.
Gažo, J., Bersuker, I. V., Garaj, J., Kabešová, M., Kohout, J., Langfelderová, H., Melní, M., Serátor, M. \& Valach, F. (1976). Coord. Chem. Rev. 19, 253-297.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Neal, J. \& Rose, N. J. (1972). Inorg. Chem. 12, 1226-1232.
Pavelčík, F., Kettmann, V. \& Majer, J. (1979). Collect. Czech. Chem. Commun. 44, 1070-1079.
Pavelčí , F. \& Majer, J. (1978). Acta Cryst. B34, 3582-3585.
Porai-Koshits, M. A., Novožilova, N. V., Polynova, T. N., Filippova, T. V. \& Martynenko, L. I. (1973). Kristallografiya, 17, 89-98.
Weakliem, H. A. \& Hoard, J. L. (1959). J. Am. Chem. Soc. 81, 549-555.

Fig. 1. A perspective drawing of (OC-6-13-A) $[\mathrm{Cu}\{(S, S) \text {-edds }\}]^{2-}$ and the numbering scheme of the atoms.

[^0]: * Lists of structure factors, anisotropic thermal parameters and H atom positions have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35605 (10 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

